
COP 4710: Database Systems (Chapter 2) Page 1 © Mark Llewellyn

COP 4710: Database Systems
Spring 2006

Chapter 2 – Introduction to Data Modeling
Part 2

COP 4710: Database Systems
Spring 2006

Chapter 2 – Introduction to Data Modeling
Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2006

COP 4710: Database Systems (Chapter 2) Page 2 © Mark Llewellyn

• Some features of a real world situation can be
difficult to model using only the features of the E-R
model that we have seen so far.

• Some quite common concepts require extending the
E-R model to incorporate mechanisms for modeling
these features. Again, we won’t look at all of them,
but rather an overview of some of the more
important extensions.

Extensions of the E-R Model

COP 4710: Database Systems (Chapter 2) Page 3 © Mark Llewellyn

• An entity set may include sub-groupings of entities that are
distinct in some way from other entities in the set. For
instance, a subset of entities within an entity set may have
attributes that are not shared by all the entities in the set.

– As an example, consider the entity set person, with attributes name,
street, and city. A person could further be classified as one of the
following: student or instructor. Each of these person types is
described by a set of attributes that includes all of the attributes of the
entity set person, plus possibly some additional attributes. For
example, student entities may be further described by the attributes
gpa, and credit-hours-earned, whereas, instructor entities are not
characterized by these attributes, but rather a different set such as,
salary, and years-employed.

• The process of designating sub-groupings within an entity set
is called specialization.

Specialization

COP 4710: Database Systems (Chapter 2) Page 4 © Mark Llewellyn

• The specialization of person allows us to distinguish among
persons according to whether they are students or instructors.

• Specialization can be repeatedly applied so that there may be
specializations within specializations.

• In terms of an E-R diagram, specialization is depicted by a
triangle shaped component which is labeled ISA, which is a
shorthand form of the “is-a” superclass-subclass relationship.

• The ISA relationship is illustrated in the diagram in the next
slide.

Specialization (cont.)

COP 4710: Database Systems (Chapter 2) Page 5 © Mark Llewellyn

Specialization (cont.)

person

name street city

instructor student

gpa

credit-hours-earned

office

years-
employed

adjunct regular-faculty administrator

course-listing

salary

section phone

ISA

ISA

COP 4710: Database Systems (Chapter 2) Page 6 © Mark Llewellyn

• The refinement from an initial entity set into successive
levels of entity sub-groupings represents a top-down design
approach in which distinctions are made explicit.

• This same design process could also proceed in a bottom-up
approach, in which multiple entity sets are synthesized into a
higher-level entity on the basis of common attributes. In
other words, we might have first identified the entity set
students(name, address, city, gpa, credit-hours-earned) and
an entity set instructors(name, address, city, salary, years-
employed).

• This commonality of attributes is expressed by
generalization, which is a containment relationship that
exists between a higher-level entity set and one or more
lower level entity sets.

Generalization

COP 4710: Database Systems (Chapter 2) Page 7 © Mark Llewellyn

• In our example, person is the higher-level entity set and
instructor and student are the lower-level entity sets.

• The higher-level entity set represents the superclass and the
lower-level entity represents the subclass. Thus, person is
the superclass of the instructor and student subclasses.

• For all practical purposes, generalization is just the inverse of
specialization and both processes can be applied (almost
interchangeably) in designing the schema for some real-
world scenario. Notice in the E-R diagram on page 5 that
there is no difference specified between generalization and
specialization other that how you view the picture (reading
from the top down or from the bottom up).

Generalization (cont.)

COP 4710: Database Systems (Chapter 2) Page 8 © Mark Llewellyn

• Differences in the two approaches are normally characterized
by their starting points and overall goal:

• Specialization arises from a single entity set; it emphasizes
differences among the entities within the set by creating
distinct lower-level entity sets. These lower-level entity sets
may have attributes or participate in relationships, that do not
apply to all the entities in the higher-level entity set.

• In fact, the reason that a designer may need to use
specialization is to represent such distinctive features of the
real world scenario.

– For example, if instructor and student neither have attributes that
person entities do not have nor participate in relationships different
than those in which person entities participate, there would be no
need to specialize the person entity set.

Specialization vs. Generalization

COP 4710: Database Systems (Chapter 2) Page 9 © Mark Llewellyn

• Generalization arises from the recognition that a number of
entity sets share some common characteristics (namely, they
are described by the same attributes and participate in the
same relationship sets).

• On the basis of these commonalities, generalization
synthesizes these entity sets into a single, higher-level entity
set.

• Generalization is used to emphasize the similarities among
lower-level entity sets and to hide the differences. It also
permits an economy of representation in that the shared
attributes are not replicated.

Specialization vs. Generalization (cont.)

COP 4710: Database Systems (Chapter 2) Page 10 © Mark Llewellyn

• A crucial property of the higher and lower level entities that
are created by specialization and generalization is attribute
inheritance.

• The attributes of the higher-level entity sets are said to be
inherited by the lower-level entity sets.

– In our example above, instructor and student both inherit all the
attributes of person (recall that person is the superclass for both
instructor and student).

• A lower-level entity set (or subclass) also inherits
participation in the relationship sets in which its higher-level
entity set (its superclass) participates.

• A lower-level entity (subclass) inherits all attributes and
relationships which belong to the higher-level entity set
(superclass) which defines it.

Attribute Inheritance

COP 4710: Database Systems (Chapter 2) Page 11 © Mark Llewellyn

• Higher-level entity sets do not inherit any attribute or
relationship which is defined within the lower-level entity
set.

• Typically, what is developed will be a hierarchy of entity
sets in which the highest-level entity appears at the top of the
hierarchy.

• If, in such a hierarchy, a given entity set may be involved as
a lower-level entity set in only one ISA relationship, then the
inheritance is said to be single-inheritance.

• If, on the other hand, a given entity set is involved as a
lower-level entity set in more than one ISA relationship, then
the inheritance is said to be multiple-inheritance (then the
resulting structure is called a lattice).

Attribute Inheritance (cont.)

COP 4710: Database Systems (Chapter 2) Page 12 © Mark Llewellyn

• In order to more accurately model a real-world situation, a data
designer may choose to place constraints on a generalization (or
specialization).

• The first type of constraint involves determining which entities can
be members of a given lower-level entity set. This membership
can be defined in one of the following two ways:

Predicate-defined: In predicate-defined lower-level entity sets,
membership is evaluated on the basis of whether or not an entity
satisfies an explicit predicate (a condition).

– For example, assume that the higher-level entity set account has the
attribute account-type. All account entities are evaluated on the
defining account-type attribute. Only those entities that satisfy the
predicate account-type = “savings account” would be allowed to
belong to the lower-level entity set savings-account. Since all the
lower-level entities are evaluated on the basis of the same attribute,
this type of generalization is said to be attribute-defined.

Constraints on Generalization

COP 4710: Database Systems (Chapter 2) Page 13 © Mark Llewellyn

User-defined: User-defined lower-level entity sets are not
constrained by a membership condition; rather, the database
user assigns entities to a given entity set.

– For instance, suppose that after working 3 months at a bank, the
employee is assigned to one of five different work groups. The teams
would be represented as five lower-level entity sets of the higher-
level entity set employee. A given employee is not assigned to a
specific work group automatically on the basis of an explicit defining
condition. Instead, the user responsible for making the group
assignment does so on an individual basis, which may be arbitrary.

Constraints on Generalization (cont.)

COP 4710: Database Systems (Chapter 2) Page 14 © Mark Llewellyn

• A second type of generalization constraint relates to whether
or not entities may belong to more than one lower-level
entity set within a single generalization. The lower-level
entity sets may be one of the following:

Disjoint: A disjointness constraint requires that an entity belong
to no more than one lower-level entity set. In the example
from above, an account entity can satisfy only one condition
for the account-type attribute at any given time.

– For example, an account-type might be either a checking account or a
savings account, but it cannot be both.

Constraints on Generalization (cont.)

COP 4710: Database Systems (Chapter 2) Page 15 © Mark Llewellyn

Overlapping: In overlapping generalizations, the same entity
may belong to more than one lower-level entity set within a
single generalization. For example, consider the banking
work group from the previous section. Suppose that certain
managers may participate in more than one work team. A
given employee (a manager) may therefore appear in more
than one of the group entity sets that are lower-level entity
sets of employee.

– Note: lower-level entity overlap is the default case; a disjointness constraint
must be placed explicitly on a generalization (or specialization). Within the
E-R model a disjointness constraint is modeled by placing the word “disjoint”
next to the triangle symbol as shown in the example below. The meaning of
this diagram should now be clear: employees and customers are
specializations of the set persons and the disjointness constraint implies that
an employee is not also a customer. If the disjoint constraint is removed,
then it is possible for an employee to also be a customer (or viewed from the
other direction, it is possible for a person to be both a customer as well as an
employee).

Constraints on Generalization (cont.)

COP 4710: Database Systems (Chapter 2) Page 16 © Mark Llewellyn

• A final type of constraint, the completeness constraint on a
generalization or specialization, specifies whether or not an
entity in the higher-level entity set must belong to at least one
of the lower-level entity sets within the
generalization/specialization. This type of constraint can
assume one of the following two forms:

Total generalization/specialization: Each higher-level entity
must belong to a lower-level entity.

Partial generalization/specialization: Some higher-level entities
may not belong to any lower-level entity set.

– Partial generalization is the default case. (Recall that total participation in a
relationship is represented in the E-R model by a double line – so too will it
be used to represent a total generalization. In the example shown below the
generalization is total and overlapping which means that every person must
appear as either an employee or a customer and it is possible for a person to
be both.

Constraints on Generalization (cont.)

COP 4710: Database Systems (Chapter 2) Page 17 © Mark Llewellyn

A total overlapping generalization/specialization

Example ERDs with Constraints

person

employee customer

ISA

COP 4710: Database Systems (Chapter 2) Page 18 © Mark Llewellyn

• One of the limitations of the E-R model is that it cannot express
relationships among relationships. To understand why this is
important consider the ternary relationship (3-way relationship)
works-on between employee, branch, and job shown in the
following E-R diagram.

Aggregation

employee branch

job

works-on

title level

branch_id

city

assets

emp-id

emp-name

city

street

COP 4710: Database Systems (Chapter 2) Page 19 © Mark Llewellyn

• Given this scenario, now suppose that we want to record the managers for
tasks performed by an employee at a branch office; that is, we want to
keep track of managers for (employee, branch, job) combinations. Let’s
assume that there is an entity set manager.

• One way to handle this is to create a quaternary relationship as shown
below.

Aggregation (cont.)

manager

manages

employee
works-on

branch

job

COP 4710: Database Systems (Chapter 2) Page 20 © Mark Llewellyn

Question: Why wouldn’t’ a binary relationship between
manager and employee work?

Answer:

Aggregation (cont.)

A binary relationship would not permit us to
represent which (branch, job) combinations of an
employee are managed by which manager.

COP 4710: Database Systems (Chapter 2) Page 21 © Mark Llewellyn

• When you look at the E-R diagram which models this
situation, it would appear that the relationships sets works-on
and manages could be combined into a single relationship
set. However, we cannot do this since some employee,
branch, job combinations may not have a manager.

• There is clearly redundant information in this figure,
however, since every employee, branch, job combination in
manages is also in works-on. If the manager were a value
rather than an entity, we could make manager a multi-valued
attribute of the relationship works-on. However, doing this
would make it more difficult (both logically as well as in
execution cost) to find, for example, employee-branch-job
triples for which the manager is responsible. However, this
option is not available in any case since the manager is a
manager entity.

Aggregation (cont.)

COP 4710: Database Systems (Chapter 2) Page 22 © Mark Llewellyn

• The best way to model this type of situation is to use
aggregation.

• Aggregation is an abstraction through which relationships are
treated as higher-level entities.

• Thus, in our example, we would regard the relationship set
works-on (relating the entity sets employee, branch, and job)
as a higher-level entity set called works-on. Such an entity
set is treated in the same manner as any other entity set. We
can then create a binary relationship manages between
works-on and manager to represent who manages what tasks.

• The E-R diagram in the next slide illustrates how aggregation
is represented in the E-R model.

Aggregation (cont.)

COP 4710: Database Systems (Chapter 2) Page 23 © Mark Llewellyn

Aggregation (cont.)

manager

manages

employee works-on branch

job

ERD illustrating aggregation

COP 4710: Database Systems (Chapter 2) Page 24 © Mark Llewellyn

• Most of the relationships that we have examined so far have
been binary relationships, i.e., those relationships involving
two entity sets.

• Any relationship involving more than two entity sets can be
converted to a collection of binary, many-to-one
relationships.

– This is useful because, while the E-R model does not limit
relationships to binary, many data models do, such as the Object
Definition Language.

• To illustrate the conversion of a multiway relationship into a
collection of binary relationships, consider the example E-R
diagram on the next page.

Multiway Relationships

COP 4710: Database Systems (Chapter 2) Page 25 © Mark Llewellyn

Multiway Relationships (cont.)

contract moviesstars

studios

name

name

name

address

year

date

address

country

studio of star producing studio

COP 4710: Database Systems (Chapter 2) Page 26 © Mark Llewellyn

Multiway Relationship Converted to a
Collection of Binary Relationships

contract

date

stars

name address

movies

name year

studio

name address

country

star-of

studio-of

movie-of

producing
studio

COP 4710: Database Systems (Chapter 2) Page 27 © Mark Llewellyn

• Roles in an E-R diagram are indicated by labeling the lines that
connect entity sets to relationship sets.

• Roles can be identified for unary (recursive), binary, and
nonbinary relationships.

E-R Diagrams with Role Indicators

employee branchemployedbinary works-at worker

employee employedunary manager

worker

COP 4710: Database Systems (Chapter 2) Page 28 © Mark Llewellyn

• Some of the parts of UML are:
1. Class diagram. A class diagram is similar to an E-R

diagram. We’ll see the correspondence between them
shortly.

2. Use case diagram. Use case diagrams show the interaction
between users and the system, in particular the steps of
tasks that users perform (such as withdrawing money from
a bank account or registering for a course).

3. Activity diagram. Activity diagrams depict the flow of
tasks between various components of the system.

4. Implementation diagram. Implementation diagrams show
the system components and their interconnections, both at
the software component level and the hardware
component level.

The Unified Modeling Language (UML) (cont.)

COP 4710: Database Systems (Chapter 2) Page 29 © Mark Llewellyn

Correspondence of E-R & UML Class Diagrams

Entity sets and attributes

customer

customer-name

customer-id

customer-street

customer-city

E-R Diagram UML Class Diagram

customer name

customer-id
customer-name
customer-street
customer-city

COP 4710: Database Systems (Chapter 2) Page 30 © Mark Llewellyn

Correspondence of E-R & UML Class Diagrams (cont.)

Relationships

E-R Diagrams UML Class Diagrams

E1 E2Rrole1 role2
E1 E2

role1 role2R

E1 E2Rrole1 role2

att1 att2

E1 E2
role1 role2

R
att1
att2

COP 4710: Database Systems (Chapter 2) Page 31 © Mark Llewellyn

Correspondence of E-R & UML Diagrams (cont.)

Cardinality Constraints

E-R Diagrams UML Diagrams

E1 E2R0..* 0..1
E1 E2

0..1 0..*R

NOTE: Positioning of cardinality constraints
is exactly opposite in the two models. In the
UML model the constraint 0..1 on the left side
means that an E2 entity can participate in at
most 1 relationship, whereas each E1 entity
can participate in many relationships; in other
words, the relationship is many to one from E2
to E1

COP 4710: Database Systems (Chapter 2) Page 32 © Mark Llewellyn

Correspondence of E-R & UML Class Diagrams (cont.)

Generalization & Specialization

E-R Diagrams

UML Class Diagrams

customer employee

person

ISA
overlapping generalization

employeecustomer

person

COP 4710: Database Systems (Chapter 2) Page 33 © Mark Llewellyn

disjoint

Correspondence of E-R & UML Class Diagrams (cont.)

Generalization & Specialization

E-R Diagrams

UML Class Diagrams

customer employee

person

ISA
disjoint generalization

employeecustomer

person

COP 4710: Database Systems (Chapter 2) Page 34 © Mark Llewellyn

• Referential integrity constraints can be as simple as
asserting that a given attribute have a non-null, single
value. However, referential integrity constraints most
commonly refer to the relationships among entity sets.

• Let’s again consider our banking example and the
many-to-one relationship between customer and
account as shown below:

Referential Integrity Constraints

customer accountdepositor

access date

COP 4710: Database Systems (Chapter 2) Page 35 © Mark Llewellyn

• The many-to-one relationship depositor simply says that no
account can be deposited into by more than one customer (and
also that a customer can deposit into many different accounts).

• More importantly, it does not say that an account must be
deposited into by a customer, nor does it say that a customer
must make a deposit into an account. Further, it does not say
that if an account is deposited into by a customer that the
customer be present in the database!

• A referential integrity constraint requires that each entity
“referenced” by the relationship must exist in the database.

• There are several methods which can be used to enforce
referential integrity constraints:

Referential Integrity Constraints (cont.)

COP 4710: Database Systems (Chapter 2) Page 36 © Mark Llewellyn

1. Deletion of a referenced entity is not allowed. In other words, if
Kristi makes a deposit into account number 456, then
subsequently we cannot delete either the information concerning
either Kristi or account 456.

2. If a referenced entity is deleted, then all entries that reference the
deleted entity also be deleted. In other words, if we delete the
information on Kristi, then we must delete all account
information for accounts that she (alone) has deposited into.
Notice in the specific example we are considering, that the
relationship is M:1 which means that if Kristi has deposited into
an account, she will be the only customer to do so. This will not
be the case for a M:M relationship however.

• Referential integrity constraints can be modeled in the E-R
model. Typically, they are depicted with a curved arrow as
shown on the next page.

Referential Integrity Constraints (cont.)

COP 4710: Database Systems (Chapter 2) Page 37 © Mark Llewellyn

Referential Integrity Constraints (cont.)

customer accountdepositor

access date

Rounded arrow indicates the
existence constraint on

accounts via its relationship
depositor with customers.

COP 4710: Database Systems (Chapter 2) Page 38 © Mark Llewellyn

• The relational data model is based on the
concept of mathematical relations.

• Codd (the guy who proposed the relational
model) was a trained mathematician and he
used terminology taken from this discipline,
primarily set theory and predicate logic.

The Relational Data Model

COP 4710: Database Systems (Chapter 2) Page 39 © Mark Llewellyn

• Relation: A relation is a table (matrix) with rows and
columns. Relations hold information about the objects
modeled in the db.

• Attribute: An attribute is a named column of a
relation. An attribute is some characteristic of an
entity (or relationship) that is modeled in the database.
Attributes can appear in any order in a relation.

• Domain: A domain is the set of allowable values for
one or more attributes. Every attribute is defined on
some domain. Domains may be distinct for each
attribute, or two or more attributes may be defined on
the same domain.

The Relational Data Model (cont.)

COP 4710: Database Systems (Chapter 2) Page 40 © Mark Llewellyn

• Tuple: A tuple is a row of a relation. Tuples can
appear in any order in a relation and the relation will
remain the same, and therefore convey the same
meaning.

• Degree: The degree of a relation is the number of
attributes it contains.

• Cardinality: The cardinality of a relation is the
number of tuples it contains.

• Relational database: A collection of normalized
relations with distinct relation names.

The Relational Data Model (cont.)

COP 4710: Database Systems (Chapter 2) Page 41 © Mark Llewellyn

An Example Relation

40000

34000

9999999

67000
90000
45000

salary

16-Dec-63

5-Jun-78

3-Jun-77

14-Mar-72
16-Nov-56
1-Oct-64

DOB

manager

manager

driver

cfo
ceo

manager

position

Bledsoe

Thompson

Schumacher

Alonzo
Spaude
Chivotti

lName

Julie

Keri

Michael

Debi
Tod

Kristy

fName

sx99

sd8

sf22

sn69
sa3
sn24

staffNo

staff

re
la

tio
n

attributes

degree

cardinality

COP 4710: Database Systems (Chapter 2) Page 42 © Mark Llewellyn

Example Domain Definitions

select one from set: {ceo, cfo,
coo,manager, asst. manager,
driver, secretary}

monetary: 7 digits, range 10,000-
9,999,999

date: range from 1-Jan-20,
format: dd-mmm-yy

character: size 20

character: size 4, must begin with
letter s.

Domain Definition

set of all possible
positions

possible values of staff
salaries

date person was born

set of all possible
person names

set of all possible staff
numbers

Meaning

alljobs

salaries

date

name

staffnumbers

Domain Name

position

salary

DOB

fName,
lName

staffNo

Attribute

COP 4710: Database Systems (Chapter 2) Page 43 © Mark Llewellyn

Alternate Terminology for Relational Model

field

record

file

Alternative 2

column

row

table

Alternative 1

attribute

tuple

relation

Formal Term

COP 4710: Database Systems (Chapter 2) Page 44 © Mark Llewellyn

• To understand the true meaning of the term relation, we need to review
some basic math concepts:

• Given two sets D1 and D2 where

D1 = {2, 4} and D2 = {1, 3, 5}

• The Cartesian product of these two sets, written D1 × D2, is the set of
all ordered pairs such that the first element is a member of D1 and the
second element is a member of D2.

– D1 × D2 = {(2, 1), (2, 3), (2, 5), (4, 1), (4, 3), (4, 5)}

• Any subset of this Cartesian product is a relation.

– Thus, we could produce relation R such that: R = {(2, 3), (4, 3)}

• We can specify some condition which will select elements from D1 ×
D2 to be included in R, such as:

– R = {(x, y) | x ∈ D1, y ∈ D2, and y = 3}

What is a Relation

COP 4710: Database Systems (Chapter 2) Page 45 © Mark Llewellyn

• Given three sets D1, D2, and D3 where

D1 = {2, 4}, D2 = {1, 3}, and D3 = {3, 6}

• The Cartesian product of three sets, written D1 × D2 × D3 , is the set of
all ordered triples such that the first element is a member of D1, the
second element is a member of D2, and the third element is a member
of D3.

– D1 × D2 × D3 = {(2, 1, 3), (2, 1, 6), (2, 3, 3), (2, 3, 6)

(4, 1, 3), (4, 1, 6), (4, 3, 3), (4, 3, 6)}

• Any subset of this Cartesian product is a relation.

• In general, if D1, D2, ... Dn are n sets. Their Cartesian product is
defined as:

and generally written as:

What is a Relation (cont.)

(){ }nn2211n21n21 Dd,,Dd,Ddd,,d,dDDD ∈∈∈=××× LLL

i

n

1i

DΧ
=

COP 4710: Database Systems (Chapter 2) Page 46 © Mark Llewellyn

• A relational schema is a named relation defined by a
set of attribute and domain name pairs.

– Ri = {A1:d1, A2:d2, ..., An:dn | d1 ∈ D1, d2 ∈ D2, ...,
dn ∈ Dn}

• A relational database schema is a set of relation
schemas, each with a distinct name.

– R = {R1, R2, ..., Rn}

What is a Relation (cont.)

COP 4710: Database Systems (Chapter 2) Page 47 © Mark Llewellyn

A relation has the following properties:

1. The relation has a name that is distinct from all other
relation names in the relational schema.

2. Each cell (attribute) contains exactly one atomic value.

3. Each attribute has a distinct name.

4. The values of an attribute are all from the same domain.

5. Each tuple is distinct; there are no duplicate tuples.

6. The order of the attributes has no significance.

7. The order of the tuples has not significance, theoretically.
(However, in practice, the order may affect the efficiency of
accessing tuples. Much more on this later.)

What is a Relation (cont.)

COP 4710: Database Systems (Chapter 2) Page 48 © Mark Llewellyn

• There is an important distinction to be made between a
relation schema and a relation instance.

• The schema is the name and attributes for the relation
and is relatively immutable.

• An instance is a set of tuples for that relation, and the
instance may change frequently. Indeed most updates
and certainly every insert and deletion will change the
instance.

– A snapshot database models the current “state” of the real world
which is captured in the database. At any given moment in time
it is modeling the current “instance” of the real world. If the real
world state changes, so too must the database to maintain the
representation of the current real world instance.

Relation Schemas vs. Relation Instances

COP 4710: Database Systems (Chapter 2) Page 49 © Mark Llewellyn

Equivalent Relations

A B C

1 2 3

3 2 1

4 4 1

2 1 3

a relation instance

B C A

2 3 1

2 1 3

4 1 4

1 3 2

a relation instance

A B C

4 4 1

3 2 1

1 2 3

2 1 3

a relation instance

A B C

4 4 1

3 2 1

1 2 4

2 1 3

a relation instance

equivalent
relation

instances

this relation instance
is not equivalent to any
of the other three

